An introduction to low/no calorie sweeteners

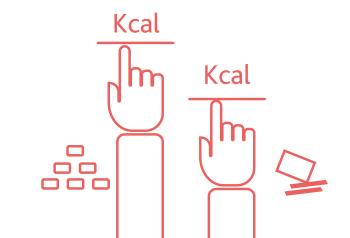
Alternation

What is a low/no calorie sweetener?

Low/no calorie sweeteners (LNCS) are sweet-tasting food ingredients with no, or virtually no, calories that are used to confer the desired sweetness to foods and drinks, while contributing very little or no energy at all to the final product (*Fitch et al, 2012; Gibson et al, 2014*).

Commonly used low/no calorie sweeteners

The most known and commonly used LNCS worldwide are acesulfame potassium (or acesulfame-K), aspartame, cyclamate, saccharin, sucralose and steviol glycosides. Other LNCS that have been approved for use in Europe and around the world include: thaumatin, neotame, neohesperidine DC and advantame.


The history behind the discovery of low/no calorie sweeteners

Low/no calorie sweeteners have been safely used and enjoyed by consumers all over the world for more than a century. The first commonly used LNCS, saccharin, was discovered at Johns Hopkins University in 1879. Since then, a number of other LNCS have been discovered and are now in use in foods and drinks around the world (Figure 1).

Before approval, all LNCS used in foods and drinks today are subject to a rigorous safety evaluation process (*Serra-Majem et al*, 2018; *Ashwell et al*, 2020). This is discussed in detail in the next chapter (Chapter 2).

Different terms are frequently used to describe LNCS in the scientific literature. The term *low/no calorie sweeteners (LNCS)* is used throughout this booklet, while other common terms include: intense sweeteners, high intensity sweeteners, high potency sweeteners, low-calorie sweeteners, non-nutritive sweeteners and non-sugar sweeteners.

Low/no calorie sweeteners impart no, or virtually no, calories to our foods and drinks, so they can be a helpful tool in reducing individuals' total energy intake.

History of the most commonly used low/no calorie sweeteners.

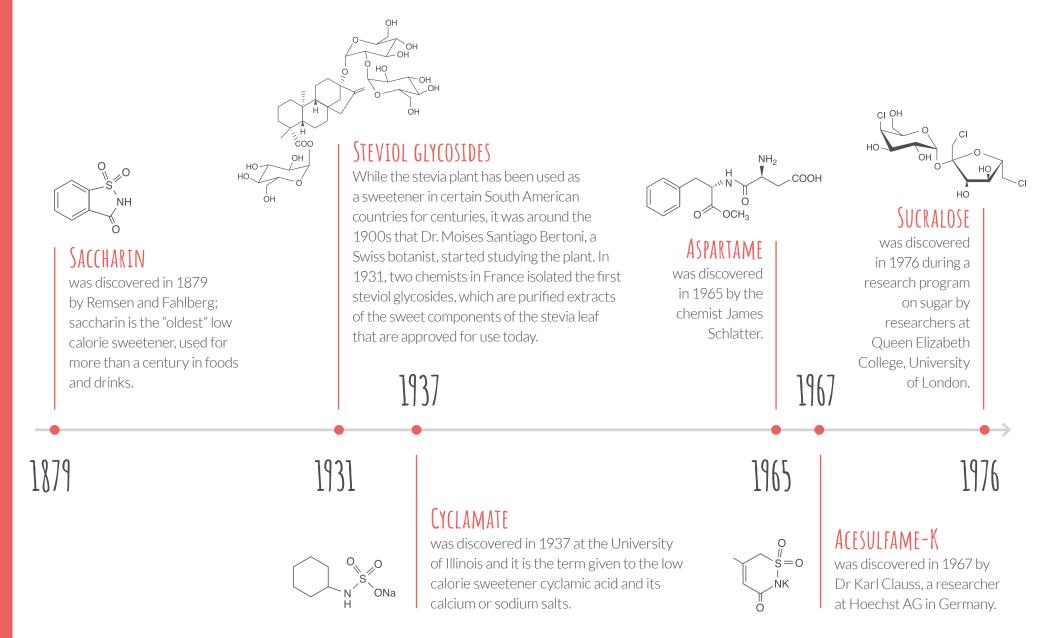


Figure 1: History of the most commonly used low/no calorie sweeteners.

Source: In book: Encyclopedia of Food Sciences and Nutrition, Edition: 2nd, 2003. Publisher: Academic Press Ltd., Editors: B. Caballero, L. Trugo, P. Finglas.

Commonalities and differences

While all LNCS used in food and drink production confer sweet taste with no, or practically no, calories and they all have a much higher sweetening power compared to sugar, each one of the different LNCS has a unique structure and metabolic fate, technical characteristics and taste profile (Magnuson et al, 2016). Some key characteristics of the most commonly used LNCS are presented in Table 1.

	Acesulfame-K	Aspartame	Cyclamate	Saccharin	Sucralose	Steviol glycosides
Year of discovery	1967	1965	1937	1879	1976	1931
Sweetening power (compared to sucrose)	Approx. 200 times sweeter than sucrose*	Approx. 200 times sweeter than sucrose*	Approx. 30-40 times sweeter than sucrose*	Approx. 300-500 times sweeter than sucrose*	Approx. 600-650 times sweeter than sucrose**	Approx. 200 to 300 times sweeter than sucrose (depending on the glycoside)*
Metabolic and biological properties	Not metabolised and excreted unchanged.	Metabolised to its constituent amino acids (protein building blocks) and a very small amount of methanol, in quantities commonly found in many foods.	Generally not metabolised and excreted unchanged.	Not metabolised and excreted unchanged.	Minimally metabolised and excreted unchanged.	Steviol glycosides are broken down to steviol in the gut. Steviol is excreted in the urine as steviol glucuronide.
Caloric value	Calorie-free	4kcal/g (used in very small amounts thus providing practically no calories)	Calorie-free	Calorie-free	Calorie-free	Calorie-free

Table 1: Key characteristics of the most common low/no calorie sweeteners

*Commission Regulation (EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council; **Opinion of the Scientific Committee on Food on sucralose, September 2000

References

- Ashwell M, Gibson S, Bellisle F, Buttriss J, Drewnowski A, Fantino M, et al. Expert consensus on low-calorie sweeteners: facts, research gaps and suggested actions. Nutr Res Rev 2020;33(1):145-154
- 2. Commission Regulation (EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council.
- 3. Encyclopedia of Food Sciences and Nutrition, Edition: 2nd, 2003. Publisher: Academic Press Ltd., Editors: B. Caballero, L. Trugo, P. Finglas.
- 4. Fitch C, Keim KS; Academy of Nutrition and Dietetics. Position of the Academy of Nutrition and Dietetics: use of nutritive and non-nutritive sweeteners. J Acad Nutr Diet 2012;112(5):739-58
- 5. Gibson S, Drewnowski A, Hill J, Raben AB, Tuorila H, Windstrom E. Consensus statement on benefits of low-calorie sweeteners. Nutrition Bulletin 2014;39(4):386-389
- 6. Magnuson BA, Carakostas MC, Moore NH, Poulos SP, Renwick AG. Biological fate of lowcalorie sweeteners. Nutr Rev 2016;74(11):670-689
- 7. Serra-Majem L, Raposo A, Aranceta-Bartrina J, Varela-Moreiras G, Logue C, Laviada H, et al. Ibero-American Consensus on Low- and No-Calorie Sweeteners: Safety, nutritional aspects and benefits in food and beverages. Nutrients 2018;10(7):818